4.8 Article

Sliding of coherent twin boundaries

Journal

NATURE COMMUNICATIONS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-01234-8

Keywords

-

Funding

  1. Natural Science Foundation of China [51231005, 51401159, 51621063, 51420105001]
  2. 973 Programs of China [2012CB619402]
  3. 111 project [B06025]
  4. ExxonMobil Research & Engineering through MITEI
  5. NSF [DMR-1410636]
  6. U.S. DoE-BES-DMSE [DE-FG02-09ER46056]
  7. Singapore-Massachusetts Institute of Technology Alliance for Research and Technology (SMART)
  8. Direct For Mathematical & Physical Scien
  9. Division Of Materials Research [1410636] Funding Source: National Science Foundation

Ask authors/readers for more resources

Coherent twin boundaries (CTBs) are internal interfaces that can play a key role in markedly enhancing the strength of metallic materials while preserving their ductility. They are known to accommodate plastic deformation primarily through their migration, while experimental evidence documenting large-scale sliding of CTBs to facilitate deformation has thus far not been reported. We show here that CTB sliding is possible whenever the loading orientation enables the Schmid factors of leading and trailing partial dislocations to be comparable to each other. This theoretical prediction is confirmed by real-time transmission electron microscope experimental observations during uniaxial deformation of copper pillars with different orientations and is further validated at the atomic scale by recourse to molecular dynamics simulations. Our findings provide mechanistic insights into the evolution of plasticity in heavily twinned face-centered cubic metals, with the potential for optimizing mechanical properties with nanoscale CTBs in material design.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available