4.6 Article

Quantification of Hydrogen Bond Strength Based on Interaction Coordinates: A New Approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 121, Issue 32, Pages 6090-6103

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.7b04752

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India, New Delhi
  2. UGC
  3. DST, Government of India
  4. IITK
  5. U.S. Department of Energy, Office of Basic Energy Sciences, Theoretical and Computational Chemistry Program [DE-FG02-97ER14748]

Ask authors/readers for more resources

A new approach to quantify hydrogen bond strengths based on interaction coordinates (HBSBIC) is proposed and is very promising. In this research, it is assumed that the projected force field of the fictitious three atoms fragment (DHA) where D is the proton donor and A is the proton acceptor from the full molecular force field of the H-bonded complex characterizes the hydrogen bond. The interaction coordinate (IC) derived from the internal compliance matrix elements of this three-atom fragment measures how the DH covalent bond (its electron density) responds to constrained optimization when the HA hydrogen bond is stretched by a known amount (its electron density is perturbed by a specified amount). This response of the DH bond, based on how the IC depends on the electron density along the HA bond, is a measure of the hydrogen bond strength. The inter- and intramolecular hydrogen bond strengths for a variety of chemical and biological systems are reported. When defined and evaluated using the IC approach, the HBSBIC index leads to satisfactory results. Because this involves only a three-atom fragment for each hydrogen bond, the approach should open up new directions in the study of appropriate small fragments in large biomolecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available