4.8 Article

The mechanism of NDM-1-catalyzed carbapenem hydrolysis is distinct from that of penicillin or cephalosporin hydrolysis

Journal

NATURE COMMUNICATIONS
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-02339-w

Keywords

-

Funding

  1. Chinese Academy of Sciences [XDB08020200]

Ask authors/readers for more resources

New Delhi metallo-beta-lactamases (NDMs), the recent additions to metallo-beta-lactamases (MBLs), pose a serious public health threat due to its highly efficient hydrolysis of beta-lactam antibiotics and rapid worldwide dissemination. The MBL-hydrolyzing mechanism for carbapenems is less studied than that of penicillins and cephalosporins. Here, we report crystal structures of NDM-1 in complex with hydrolyzed imipenem and meropenem, at resolutions of 1.80-2.32 angstrom, together with NMR spectra monitoring meropenem hydrolysis. Three enzyme-intermediate/product derivatives, EI1, EI2, and EP, are trapped in these crystals. Our structural data reveal double-bond tautomerization from Delta(2) to Delta(1), absence of a bridging water molecule and an exclusive beta-diastereomeric product, all suggesting that the hydrolytic intermediates are protonated by a bulky water molecule incoming from the beta-face. These results strongly suggest a distinct mechanism of NDM-1-catalyzed carbapenem hydrolysis from that of penicillin or cephalosporin hydrolysis, which may provide a novel rationale for design of mechanism-based inhibitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available