4.8 Article

Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries

Journal

ENERGY STORAGE MATERIALS
Volume 7, Issue -, Pages 203-208

Publisher

ELSEVIER
DOI: 10.1016/j.ensm.2017.02.003

Keywords

Lithium ion battery; Silicon anode; Electrodeposition; Hierarchically porous structure; Amorphous

Funding

  1. National Natural Science Foundation of China [51622202, U1507107, 21503009]
  2. Guangdong Provincial Science and Technology Program [2016B010114001]
  3. Funding Projects for Thousand Youth Talents Plan

Ask authors/readers for more resources

Silicon is a promising alternative anode material for high-performance lithium ion batteries (LIBs) because of its high specific capacity. However, the practical application is still hampered by poor cycle and rate performance because of the tremendous volume expansions/contractions during the lithium ions insertions/extractions. Here we report a hierarchically porous silicon anode consisting of uniformly dispersed nanoparticles with amorphous structure that has been electrodeposited successfully on the copper foil and been utilized directly for LIBs. The typical size of silicon particle is similar to 100-200 nm, which is beneficial for the fast lithium ions diffusion in a short distance. The hierarchical pores with interconnect channels are easy for the electrolyte filling and ions transports, and can offer sufficient space for the volume expansions of silicon anode during lithium ions insertions. Furthermore, the amorphous feature of the silicon nanoparticles can effectively release the stress from the lithiation-induced large volume expansions and enhance the structure stability, which are beneficial for the long cycling lifetime. Combing the highly conductive copper substrate, the free-standing silicon anode shows high reversible capacity of 1200 mA/g, excellent cycling stability (similar to 1000 mAh/g for 230 cycles) and outstanding rate performance (1000 and 600 mAh/g at 300 and 2000 mA/g, respectively). This study may pave a new way to develop silicon/copper composite materials as binder-free anodes for high-performance LIBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available