4.6 Article

Fast facile synthesis of SnO2/Graphene composite assisted by microwave as anode material for lithium-ion batteries

Journal

ELECTROCHIMICA ACTA
Volume 246, Issue -, Pages 1104-1111

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.06.111

Keywords

Tin oxide; Graphene; Facile microwave hydrothermal method; Anode; Lithium ion battery

Funding

  1. Natural Science Youth Foundation of Jiangsu Province of China [BK20160404]
  2. University Science Research Project of Jiangsu Province [16KJB430001]

Ask authors/readers for more resources

SnO2 is promising as anode material for Lithium ion batteries(LIBs) due to its high specific capacity and low opening potential. However, its poor electronic conductivity as well as serious volume effect significantly restrict its application in LIBs. In this work, a facile hydrothermal method assisted with microwave is performed to realize the composite of SnO2 and graphene within only 30 minutes without any chelating agents. It is highly time-efficient with relatively high SnO2 loading of 89.97 wt.%. Ultrasmall nano-particles of SnO2 well disperse on the surface of the graphene with average particle size of 3-8 nm and larger surface area of 417.45 m(2) g(-1). Simultaneously, high charge/discharge capacity of 969.4/978.6 mAh g(-1) is obtained after 100 cycles at 200 mA g(-1). Even increasing the current density to 1 A g(-1), high reversible charge/discharge capacities of 740.0/747.0 mAh g(-1) are still remained after 200 cycles. In addition, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are performed to further study the composite material prepared by facile microwave hydrothermal method. It is considered to be a high efficient way to obtain SnO2/graphene composite with excellent electrochemical properties as anode material for applications. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available