4.5 Article

Does Ceramide Form Channels? The Ceramide-Induced Membrane Permeabilization Mechanism

Journal

BIOPHYSICAL JOURNAL
Volume 113, Issue 4, Pages 860-868

Publisher

CELL PRESS
DOI: 10.1016/j.bpj.2017.06.071

Keywords

-

Categories

Funding

  1. Spanish Ministry of Economy [BFU2015-66306-P]
  2. Basque Government [IT 838-13, IT 849-13]
  3. University of the Basque Country (UPV/EHU)

Ask authors/readers for more resources

Ceramide is a sphingolipid involved in several cellular processes, including apoptosis. It has been proposed that ceramide forms large and stable channels in the mitochondrial outer membrane that induce cell death through direct release of cytochrome c. However, this mechanism is still debated because the membrane permeabilizing activity of ceramide remains poorly understood. To determine whether the mechanism of ceramide-induced membrane leakage is consistent with the hypothesis of an apoptotic ceramide channel, we have used here assays of calcein release from liposomes. When assaying liposomes containing sphingomyelin and cholesterol, we observed an overall gradual, phenomenon of contents release, together with some all-or-none leakage (at low ceramide concentrations or short times). The presence of channels in the bilayer should cause only an all-or-none leakage. When liposomes poor in sphingomyelin/cholesterol or mimicking the lipid composition of the mitochondrial outer membrane were tested, we did not detect any leakage. In consequence, the hypothesis of formation of large ceramide channels in the membrane is not consistent with our results. Instead we propose that the presence of ceramide in one of the membrane monolayers causes a surface area mismatch between both monolayers, which leads to vesicle collapse. The gradual phenomenon of calcein release would be due to a competition between two ceramide effects; namely, lateral segregation that facilitates permeabilization, and at longer times, trans-bilayer flip-flop that opposes asymmetric lateral segregation and causes a mismatch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available