4.8 Article

An Actomyosin-Arf-GEF Negative Feedback Loop for Tissue Elongation under Stress

Journal

CURRENT BIOLOGY
Volume 27, Issue 15, Pages 2260-+

Publisher

CELL PRESS
DOI: 10.1016/j.cub.2017.06.038

Keywords

-

Funding

  1. Canadian Institutes of Health Research [MOP82829]
  2. Tier 2 Canada Research Chair
  3. Canada Foundation for Innovation grant [30279]
  4. Natural Sciences and Engineering Research Council of Canada Discovery Grant
  5. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

In response to a pulling force, a material can elongate, hold fast, or fracture. During animal development, multi-cellular contraction of one region often stretches neighboring tissue. Such local contraction occurs by induced actomyosin activity, but molecular mechanisms are unknown for regulating the physical properties of connected tissue for elongation under stress. We show that cytohesins, and their Arf small G protein guanine nucleotide exchange activity, are required for tissues to elongate under stress during both Drosophila dorsal closure (DC) and zebrafish epiboly. In Drosophila, protein localization, laser ablation, and genetic interaction studies indicate that the cytohesin Steppke reduces tissue tension by inhibiting actomyosin activity at adherens junctions. Without Steppke, embryogenesis fails, with epidermal distortions and tears resulting from myosin misregulation. Remarkably, actomyosin network assembly is necessary and sufficient for local Steppke accumulation, where live imaging shows Steppke recruitment within minutes. This rapid negative feedback loop provides a molecular mechanism for attenuating the main tension generator of animal tissues. Such attenuation relaxes tissues and allows orderly elongation under stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available