4.6 Article

Physical Modeling of the Proton Density in Nanopores of PEM Fuel Cell Catalyst Layers

Journal

ELECTROCHIMICA ACTA
Volume 245, Issue -, Pages 1048-1058

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.05.052

Keywords

metal charging; ionomer surface charge; proton density distribution; catalyst layer; nanopore; effectiveness factor of Pt utilization

Funding

  1. Automotive Partnership Canada [APCPJ417858]
  2. Catalysis Research for Polymer Electrolyte Fuel Cells(CaRPE-FC) network

Ask authors/readers for more resources

In polymer electrolyte fuel cells, a foremost goal is to design catalyst layers with high performance at markedly reduced platinum loading. As a contribution towards this objective, we explore a simplified pore geometry to capture the impact of ionomer structure and metal charging properties on the proton density distribution and conductivity in relevant nanopores. The basic model is a cylindrical tubular pore confined by an ionomer shell and a solid platinum-coated core. The gap region between metal and ionomer is filled with water. We study how the surface charge density at the ionomer and the metal charging relation as well as geometric pore parameters affect the electrochemical performance. The density of charged side chains at the ionomer shell exerts a pronounced impact on the surface charge density at the Pt surface and thereby on the activity of the pore for the oxygen reduction reaction. The key parameter controlling the interplay of surface and bulk charging phenomena is the overlap of the Debye lengths of ionomer and metal surfaces in relation to the width of the gap. It allows distinguishing regions with weak and strong correlation between surface charge densities at ionomer shell and Pt core. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available