4.4 Article

Pien Tze Huang inhibits the proliferation of colorectal cancer cells by increasing the expression of miR-34c-5p

Journal

EXPERIMENTAL AND THERAPEUTIC MEDICINE
Volume 14, Issue 4, Pages 3901-3907

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2017.4972

Keywords

Pien Tze Huang; traditional Chinese medicine; colorectal cancer; proliferation; miR-34c

Funding

  1. National Natural Science Foundation of China [81403390]
  2. Developmental Fund of CHEN Ke-ji Integrative Medicine [CKJ2013012, CKJ2014004]

Ask authors/readers for more resources

MicroRNAs (miRNAs) are small, short endogenous non-coding RNA that act as oncogenes or tumor suppressors, and serve an important role in various human malignant cancers, including colorectal cancer (CRC). Evidence has indicated that miRNAs regulate the expression of various genes associated with human cancer, in particular the miR-34 family. A well-known traditional Chinese formula, Pien Tze Huang (PZH), has a significant clinical effect on CRC. Previous studies have demonstrated that PZH inhibits CRC growth in vitro and in vivo via multiple mechanisms, including the induction of apoptosis, inhibition of cell proliferation and tumor angiogenesis. To further elucidate the molecular mechanisms underlying the antitumor activity of PZH, in the present study its effects on cell proliferation and miRNA expression in human colon carcinoma (HCT)-8 cell lines was examined. It was observed that treatment with PZH inhibited cell viability and upregulated the expression of miR-34c-5p in HCT-8 cells. In addition, transfection with an miR-34c-5p mimic and treatment with PZH inhibited cell survival and arrested the cell cycle between the G0/G1 and S phase in HCT-8 cells. Furthermore, PZH treatment and transfection with miR-34c-5p downregulated the expression of cyclin-dependent kinase 4 and cMyc (a promoter of cell proliferation), and increased the expression of p53, which is a promoter of apoptosis. These results suggest that PZH may suppress proliferation in CRC cells by upregulating the expression of miR-34c-5p, which provides a novel perspective for understanding the mode of action of PZH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available