4.8 Article

Ultrathin MoS2 Nanosheets@Metal Organic Framework-Derived N-Doped Carbon Nanowall Arrays as Sodium Ion Battery Anode with Superior Cycling Life and Rate Capability

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201702116

Keywords

metal organic frameworks; nanowall arrays; N-doped carbon; sodium ion battery; ultrathin MoS2

Funding

  1. 973 Program [2013CB632701]
  2. National Natural Science Foundation of China [51202163]

Ask authors/readers for more resources

This study reports the design and fabrication of ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall array hybrids on flexible carbon cloth (CC@CN@MoS2) as a free-standing anode for high-performance sodium ion batteries. When evaluated as an anode for sodium ion battery, the as-fabricated CC@CN@MoS2 electrode exhibits a high capacity (653.9 mA h g(-1) of the second cycle and 619.2 mA h g(-1) after 100 cycles at 200 mA g(-1)), excellent rate capability, and long cycling life stability (265 mA h g(-1) at 1 A g(-1) after 1000 cycles). The excellent electrochemical performance can be attributed to the unique 2D hybrid structures, in which the ultrathin MoS2 nanosheets with expanded interlayers can provide shortened ion diffusion paths and favorable Na+ insertion/extraction space, and the porous N-doped carbon nanowall arrays on flexible carbon cloth are able to improve the conductivity and maintain the structural integrity. Moreover, the N-doping-induced defects also make them favorable for the effective storage of sodium ions, which enables the enhanced capacity and rate performance of MoS2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available