4.5 Article

Dopamine protects cerebral autoregulation and prevents hippocampal necrosis after traumatic brain injury via block of ERK MAPK in juvenile pigs

Journal

BRAIN RESEARCH
Volume 1670, Issue -, Pages 118-124

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2017.06.010

Keywords

Cerebral autoregulation; Signal transduction; Age; Sex; Brain injury; Histopathology; Vasopressor

Categories

Funding

  1. National Institutes of Health [R01 NS090998]

Ask authors/readers for more resources

Traumatic brain injury (TBI) contributes to morbidity in children, and more boys experience TBI. Cerebral autoregulation is impaired after TBI, contributing to poor outcome. Cerebral Perfusion Pressure (CPP) is often normalized by use of vasoactive agents to increase mean arterial pressure (MAP). In prior studies of newborn and juvenile pigs, vasoactive agent choice influenced outcome after TBI as a function of age and sex, with none protecting cerebral autoregulation in both ages and sexes. Dopamine (DA) prevents impairment of cerebral autoregulation in male and female newborn pigs via inhibition of upregulation of ERK mitogen activated protein kinase (MAPK) after fluid percussion injury (FPI). We investigated whether DA protects autoregulation and limits histopathology after FPI in juvenile pigs and the role of ERK in that outcome. Results show that DA protects autoregulation in both male and female juvenile pigs after FPI. Papaverine induced dilation was unchanged by FPI and DA. DA blunted ERK MAPK and prevented loss of neurons in CA1 and CA3 hippocampus of males and females after FPI. These data indicate that DA protects autoregulation and limits hippocampal neuronal cell necrosis via block of ERK after FPI in male and female juvenile pigs. Of the vasoactive agents prior investigated, including norepinephrine, epinephrine, and phenylephrine, DA is the only one demonstrated to improve outcome after TBI in both sexes and ages. These data suggest that DA should be considered as a first line treatment to protect cerebral autoregulation and promote cerebral outcomes in pediatric TBI irrespective of age and sex. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available