4.7 Article

Astrocyte hepcidin is a key factor in LPS-induced neuronal apoptosis

Journal

CELL DEATH & DISEASE
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2017.93

Keywords

-

Categories

Funding

  1. National Natural Sciences Foundation of China [31471035, 30871260]
  2. State Key Laboratory of Neuroscience
  3. Shanghai Institutes for Biological Sciences
  4. Chinese Academy of Sciences [SKLN-201405]

Ask authors/readers for more resources

Inflammatory responses involving microglia and astrocytes contribute to the pathogenesis of neurodegenerative diseases (NDs). In addition, inflammation is tightly linked to iron metabolism dysregulation. However, it is not clear whether the brain inflammation-induced iron metabolism dysregulation contributes to the NDs pathogenesis. Herein, we demonstrate that the expression of the systemic iron regulatory hormone, hepcidin, is induced by lipopolysaccharide (LPS) through the IL-6/ STAT3 pathway in the cortex and hippocampus. In this paradigm, activated glial cells are the source of IL-6, which was essential in the iron overload-activated apoptosis of neurons. Disrupting astrocyte hepcidin expression prevented the apoptosis of neurons, which were able to maintain levels of FPN1 adequate to avoid iron accumulation. Together, our data are consistent with a model whereby inflammation initiates an intercellular signaling cascade in which activated microglia, through IL-6 signaling, stimulate astrocytes to release hepcidin which, in turn, signals to neurons, via hepcidin, to prevent their iron release. Such a pathway is relevant to NDs in that it links inflammation, microglia and astrocytes to neuronal damage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available