4.7 Article

Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells

Journal

CELL DEATH & DISEASE
Volume 8, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2017.262

Keywords

-

Categories

Funding

  1. National Nature Science Foundation of China [31472251]
  2. foundation for the author of national excellent doctoral dissertation of PR China [201266]
  3. fund of Fok Ying Tung Education Foundation [141022]
  4. Priority Academic Program Development of Jiangsu Higher Education Institutions (PADD)
  5. Funds of Shandong Double Tops Program

Ask authors/readers for more resources

Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. Autophagy has an important protective role in various renal injuries, but the role of autophagy in Pb-elicited nephrotoxicity remains largely unknown. In this study, Pb promoted the accumulation of autophagosomes in primary rat proximal tubular (rPT) cells, and subsequent findings revealed that this autophagosome accumulation was caused by the inhibition of autophagic flux. Moreover, Pb exposure did not affect the autophagosome-lysosome fusion in rPT cells. Next, we found that Pb caused lysosomal alkalinization, may be through suppression of two V-ATPase subunits. Simultaneously, Pb inhibited lysosomal degradation capacity by affecting the maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Furthermore, translocation of CTSB and CTSD from lysosome to cytoplasm was observed in this study, suggesting that lysosomal membrane permeabilization (LMP) occurred in Pb-exposed rPT cells. Meanwhile, Pb-induced caspase-3 activation and apoptosis were significantly but not completely inhibited by CTSB inhibitor (CA 074) and CTSD inhibitor (pepstatin A), respectively, demonstrating that LMP-induced lysosomal enzyme release was involved in Pb-induced apoptosis in rPT cells. In conclusion, Pb-mediated autophagy blockade in rPT cells is attributed to the impairment of lysosomal function. Both inhibition of autophagic flux and LMP-mediated apoptosis contribute to Pb-induced nephrotoxicity in rPT cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available