4.6 Article Proceedings Paper

Electrochemical-Thermal Model of Pouch-type Lithium-ion Batteries

Journal

ELECTROCHIMICA ACTA
Volume 247, Issue -, Pages 569-587

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2017.06.164

Keywords

Pouch type lithium-ion battery; Thermal analysis; Electrochemical-thermal model; Heat generation

Funding

  1. battery research laboratory at the University of Windsor

Ask authors/readers for more resources

In this paper, a 3D (three-dimensional) layer structure of a pouch-type cell is modeled to understand the distribution of temperature and current density across the pouch type Lithium-Ion Battery (LIB). The electrochemical-thermal characteristics are studied, using 1D (one-dimensional) multiphysics model, and simulation results are validated with experimental results. Three-dimensional (3D) modeling of the battery gives the most efficient estimation of energy density, temperature response, overall heat generation and distribution inside the battery. One such 3D electro-thermal model was developed in this work, and the results obtained by the 3D model were validated by using experimental results obtained from LIBs. Temperature profiles of LIB obtained from 3D modeling indicated that the most heat is accumulated around the positive tab of the battery due to non-uniform current distribution and local internal resistance. The presented model can be used as a fast, yet accurate tool, to optimize the cell design for a particular application and for developing battery thermal management systems. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available