4.0 Article

Characterizing the Mechanical Properties of Fused Deposition Modelling Natural Fiber Recycled Polypropylene Composites

Journal

JOURNAL OF COMPOSITES SCIENCE
Volume 1, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/jcs1010007

Keywords

3D printing; natural fiber; composite; fused deposition modelling; recycled plastic

Funding

  1. Hamilton City Council
  2. Waikato District Council

Ask authors/readers for more resources

The objective of this investigation was to characterize the performance of natural fiber reinforced polypropylene composites in fused deposition modelling (FDM). Composite filaments comprising of pre-consumer recycled polypropylene with varying contents of hemp or harakeke fibers were extruded from which tensile test specimens were made using FDM. Filament and test specimens were tensile tested and properties were compared with plain polypropylene samples; the ultimate tensile strength and Young's modulus of reinforced filament increased by more than 50% and 143%, respectively, for both 30 wt % hemp or harakeke compared to polypropylene filament. However, the same degree of improvement was not seen with the FDM test specimens, with several compositions having properties lower than for unfilled polypropylene. SEM analysis of fracture surfaces revealed uniform fiber dispersion and reasonable fiber alignment, but porosity and fiber pull-out were also observed. Fiber reinforcement was found to give benefit regarding dimensional stability during extrusion and FDM, which is of major importance for its implementation in FDM. Recommendations for optimization of processing in order to enhance build quality and improve mechanical properties are provided.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available