4.6 Article

Plant growth-promoting abilities and biocontrol efficacy of Streptomyces sp UPMRS4 against Pyricularia oryzae

Journal

BIOLOGICAL CONTROL
Volume 112, Issue -, Pages 55-63

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.biocontrol.2017.05.011

Keywords

Rice blast; Streptomyces; Gene expression; Chitinase; Glucanase

Funding

  1. Fundamental Research Grant Scheme (FRGS)

Ask authors/readers for more resources

The Streptomyces strain UPMRS4 was selected as a potential biocontrol agent for rice blast disease based on its strong antagonistic activity against Pyricularia oryzae strain UPMPo in vitro. It was further identified as a novel Streptomyces sp. through 16S ribosomal DNA sequence analysis. Biochemical characterization indicated that UPMRS4 was positive for ammonia, urea and siderophore production, as well as amylase, protease and lipase enzymatic tests. Treatment with UPMRS4 was able to reduce 67.9% of disease severity compared with other treatments and able to increase shoot height (15.13%), shoot dry weight (45.75%), leaf surface area (44.6%), root length (48.93), root dry weight (63.25%), number of tillers (42.26%), yield (36.96%), panicle length (15.4%) and the number of spikelet/ panicles (29.39%) compared to the control plants at three months after inoculation. The transcript level of chitinase (Cht-1), glucanase (Gns1), pathogenesis-related gene (OsPR1a) and salicylic acid-responsive gene (Oswrky45) were up-regulated during early rice-UPMRS4 interactions. These results suggest that UPMRS4 is a very promising antagonist candidate against P. oryzae which could be developed for sustainable rice blast disease management. To our best knowledge, this is the first study related to the effects of an actinomycete on rice blast disease and plant growth in Malaysia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available