4.8 Article

Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution

Journal

ACS NANO
Volume 11, Issue 9, Pages 8650-8659

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.7b04381

Keywords

nanomechanics; bimodal AFM; multifrequency AFM; membrane proteins; metal-organic frameworks

Funding

  1. European Research Council [ERC-AdG-340177]
  2. Ministerio of Educacion, Cultura y Deporte [FPU15/04622]
  3. Ministerio de Economia y Competitividad [CSD2010-00024, MAT2016-76507-R]

Ask authors/readers for more resources

Fast quantitative mapping of mechanical properties with nanoscale spatial resolution represents one of the major goals of force microscopy. This goal becomes more challenging when the characterization needs to be accomplished with subnanometer resolution in a native environment that involves liquid solutions. Here we demonstrate that bimodal atomic force microscopy enables the accurate measurement of the elastic modulus of surfaces in liquid with a spatial resolution of 3 angstrom. The Young's modulus can be determined with a relative error below 5% over a 5 orders of magnitude range (1 MPa to 100 GPa). This range includes a large variety of materials from proteins to metal-organic frameworks. Numerical simulations validate the accuracy of the method. About 30 s is needed for a Young's modulus map with subnanometer spatial resolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available