4.3 Article

In vitro and in silico insights of Cupressus sempervirens, Artemisia absinthium and Lippia triphylla: Bridging traditional knowledge and scientific validation

Journal

EUROPEAN JOURNAL OF INTEGRATIVE MEDICINE
Volume 12, Issue -, Pages 135-141

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.eujim.2017.05.010

Keywords

Cupressus sempervirens; Bioactive compounds; Diabetes; Neurodegenerative disorders; Traditional medicine; Antioxidant; Molecular docking; Lippia triphylla

Ask authors/readers for more resources

Introduction: The search for new therapeutic agents for the management of diabetes mellitus type 2 (DMT2) and neurodegenerative disorders coupled with the rising number of patients suffering from these pathologies have attracted much interest. Traditionally, extracts from medicinal plants have been used to manage a number of ailments and still remain a potent source of new therapeutic agents. Methods: Therefore, the present study was undertaken to evaluate the in vitro antioxidant and enzyme (acetyl cholinesterase (AChE), butyryl cholinesterase (BChE), tyrosinase, alpha-amylase, and alpha-glucosidase) inhibitory potential of three medicinal plants (Cupressus sempervirens, Artemisia absinthium, and Lippia triphylla). The phenolic composition of the ethanolic extracts was also characterized using reversed-phase high-performance liquid chromatography (RP-HPLC). In silico molecular docking was used to investigate the possible interaction between active compounds and the studied enzymes. Results: C. sempervirens showed the highest inhibition rates against AChE, BChE, alpha-amylase, and alpha-glucosidase (2.47 mg galantamine equivalents (GALAE)/g extract, 2.98 mg GALAE/g extract, 1.61 mmol acarbose equivalents (ACAE)/g extract, and 1.86 mmol ACAE/g extract for respective enzymes). The plant extracts showed antioxidant power in the following order C. sempervirens > L. triphylla > A. absinthium. Protocatechuic acid, (+)-catechin, apigenin, and chlorogenic acid were identified in all the plant extracts. The best docking pose obtained for each bioactive compound against the enzymes was mostly stabilized via hydrogen bonds and pi-pi stacks. Conclusion: This study provides insight into the antioxidant capacity and the inhibitory potential of these medicinal plants against key enzymes linked to DMT2 and neurodegenerative disorders.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available