4.7 Article

microRNAs participate in gene expression regulation and phytohormone cross-talk in barley embryo during seed development and germination

Journal

BMC PLANT BIOLOGY
Volume 17, Issue -, Pages -

Publisher

BIOMED CENTRAL LTD
DOI: 10.1186/s12870-017-1095-2

Keywords

Barley (Hordeum vulgare); Microrna; Seed development; Germination; Embryo; Auxin response; Abscisic acid; Gibberellic acid

Categories

Funding

  1. National Science Foundation of China [31171543, 31,571,645]
  2. China Agriculture Research System [CARS-05]

Ask authors/readers for more resources

Background: Small RNA and degradome sequencing have identified a large number of miRNA-target pairs in plant seeds. However, detailed spatial and temporal studies of miRNA-mediated regulation, which can reflect links between seed development and germination are still lacking. Results: In this study, we extended our investigation on miRNAs-involved gene regulation by a combined analysis of seed maturation and germination in barley. Through bioinformatics analysis of small RNA sequencing data, a total of 1324 known miRNA families and 448 novel miRNA candidates were identified. Of those, 16 known miRNAs with 40 target genes, and three novel miRNAs with four target genes were confirmed based on degradome sequencing data. Conserved miRNA families such as miR156, miR168, miR166, miR167, and miR894 were highly expressed in embryos of developing and germinating seeds. A barley-specific miRNA, miR5071, which was predicted to target an OsMLA10-like gene, accumulated at a high level, suggesting its involvement in defence response during these two developmental stages. Based on target prediction and Kyoto Encyclopedia of Genes and Genomes analysis of putative targets, nine highly expressed miRNAs were found to be related to phytohormone signalling and hormone cross-talk. Northern blot and qRT-PCR analysis showed that these miRNAs displayed differential expression patterns during seed development and germination, indicating their different roles in hormone signalling pathways. In addition, we showed that miR393 affected seed development through targeting two genes encoding the auxin receptors TIR1/AFBs in barley, as over-expression of miR393 led to an increased length-width ratio of seeds, whereas target mimic (MIM393)-mediated inhibition of its activity decreased the 1000-grain weight of seeds. Furthermore, the expression of auxin-responsive genes, abscisic acid-and gibberellic acid-related genes was altered in miR393 misexpression lines during germination and early seedling growth. Conclusions: Our work indicates that miRNA-target pairs participate in gene expression regulation and hormone interaction in barley embryo and provides evidence that miR393-mediated auxin response regulation affects grain development and influences gibberellic acid and abscisic acid homeostasis during germination.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available