4.7 Article

A binary mixing model for characterizing stony-soil water retention

Journal

AGRICULTURAL AND FOREST METEOROLOGY
Volume 244, Issue -, Pages 1-8

Publisher

ELSEVIER
DOI: 10.1016/j.agrformet.2017.05.013

Keywords

Binary mixture; Stony soil; Water retention; Simplified evaporation method; HYDRUS-3D

Funding

  1. iUTAH project through an NSF EPSCoR as part of the State of Utah Research Infrastructure Improvement Award [EPS 1208732]
  2. Utah Agricultural Experiment Station, Utah State University, Logan, Utah [8954]
  3. Office Of The Director
  4. Office of Integrative Activities [1208732] Funding Source: National Science Foundation

Ask authors/readers for more resources

A century of research focused primarily on agricultural soils has largely ignored stony soils, which dominate some forests and are poorly understood in terms of the stone influence on soil hydraulic properties. Motivated by this knowledge gap, we quantified the influence of soil-containing stone fragments on bulk soil hydraulic properties by determining the water retention curve (WRC) of soil, stone and stone-soil mixtures with varied volumetric stone content. The measured WRC for seven different stone types based on their composition showed maximum and minimum saturated water contents of 0.55 m(3) m(-3) in pumice and 0.025 m(3) m(-3) in fine sandstone, respectively. The stony soil water retention function was measured using the simplified evaporation method. Contrasting scenarios were studied considering a broad range of stone inclusions; (i) negligibly porous, (ii) significantly porous but less porous than the background soil, (iii) more porous than the background soil. An averaging scheme to describe the WRC of stony soil was proposed based on the individual WRC of the background and stone inclusion which was in good agreement with the experimental data. The HYDRUS-3D model was also employed to simulate the evaporation experiment used for the WRC measurements. The model simulations supported the basic assumptions of the proposed averaging scheme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available