4.8 Article

Rational Design of Polymeric Nanoparticles with Tailorable Biomedical Functions for Cancer

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 9, Issue 35, Pages 29612-29622

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.7b10763

Keywords

multicomponent Passerini reaction; drug delivery; bioimaging; photodynamic therapy; polymer

Funding

  1. National Natural Science Foundation of China [51522307, 81673396]

Ask authors/readers for more resources

Polymeric nanoparticles (NPs) play a key role in nanoscale formulations for bioimaging, cancer treatment, and theranostics. In this work, we designed and synthesized a series of hydrophobic polymers (P1-6) with different pendent groups via one-step multicomponent Passerini reaction. These polymers possessed similar molecular structures and various biomedical functions. Interestingly, they could self-assemble into stable NPs in aqueous media. All formed NPs were redox sensitive because of the existence of disulfide bonds in the backbone. The stability of NPs in aqueous media with or without glutathione was systematically evaluated and compared. The optical performance, including fluorescence resonance energy transfer, was characterized under different conditions for those polymers with fluorescent components. Importantly, all formed NPs showed good cytocompatibility toward HeLa cells and different biological functions, including drug loading and delivery, bioimaging with variable fluorescence, and photodynamic activity, as evidenced by experiments in vitro and in vivo. These results demonstrate the great potential of multicomponent reaction to customize versatile polymeric nanoparticles for biomedical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available