4.6 Article

Improving 1,3-butadiene yield by Cs promotion in ethanol conversion

Journal

APPLIED CATALYSIS A-GENERAL
Volume 543, Issue -, Pages 67-74

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2017.05.025

Keywords

Bio-butadiene; Supported catalysts; Cs-promotion; Aldol condensation; Acid-base balance

Funding

  1. Science and Engineering Research Council of A*STAR (Agency for Science Technology and Research), Singapore [1124004031, 1124004115]

Ask authors/readers for more resources

Gas phase conversion of ethanol into butadiene was studied over silica-supported ZnO, ZrO2 and ZnO-ZrO2 catalysts in a fixed-bed reactor. Surface active sites were characterised using a variety of techniques including temperature-programmed desorption (TPD) of NH3 and CO2 as well as Fourier transform infrared (FTIR) spectroscopy of adsorbed pyridine. An increased concentration of acid and base sites was found in the following order: ZnO < ZrO2 < ZnO-ZrO2. In addition, new acid and base sites were generated when alkaline metal promoters were introduced. Typical reaction products for all catalysts include acetaldehyde, butadiene, ethylene, propylene, butenes, diethyl ether and C-4 oxygenates. Compared to single oxide supported catalysts, a remarkable acid-base synergetic effect was observed on the binary oxides supported catalysts with or without alkali metal modification. The improved catalytic activity and selectivity can be attributed to the right balance between acid and base sites, minimising dehydration to ethylene while promoting dehydrogenation to acetaldehyde. Furthermore, the existence of acid-base pairs with the appropriate configuration and strength promotes the aldol condensation and Meerwein-Ponndorf-Verley (MPV) reduction efficiently.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available