4.8 Article

Probe for simultaneous membrane and nucleus labeling in living cells and in vivo bioimaging using a two-photon absorption water-soluble Zn(II) terpyridine complex with a reduced pi-conjugation system

Journal

CHEMICAL SCIENCE
Volume 8, Issue 1, Pages 142-149

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6sc02342h

Keywords

-

Funding

  1. National Natural Science Foundation of China [51372003, 21271004, 51432001, 21271003, 21501001]
  2. Ministry of Education
  3. Anhui University Doctor Startup Fund [J01001962]
  4. Higher Education Revitalization Plan Talent Project
  5. China Postdoctoral Science Foundation [2015M571912]

Ask authors/readers for more resources

Small, biocompatible and water-soluble molecules with high two-photon absorption (2PA) cross-section values (delta) are in high demand for specific bioimaging applications. Here, two novel terpyridine derivative ligands with donor-acceptor (D-A) (L1) and donor-pi-acceptor (D-pi-A) (L2) models, and their corresponding Zn(II) complexes are designed and characterized. It was found that the two-photon absorption cross section values (d) in the near-infrared region (NIR, about 800 nm) are significantly enhanced for complexes 1 and 2 compared to their free D-A type ligand L1, while those of complexes 3 and 4 were greatly decreased relative to their free ligand L2, thus confirming that the smaller ligand (D-A type) displays a suitable Turn-ON fluorescence pair for two-photon fluorescence microscopy (2PFM). Firstly, the potential of simultaneously labeling a live cell plasma membrane and nucleus using complex 1 is demonstrated. In addition, live larval and adult zebrafish incubated with an optimal concentration of 1 demonstrated clear brain uptake. Lastly and importantly, using such a probe to visualize the blood-brain- barrier (BBB) capillary endothelial cells and penetrate the BBB into the central nervous system (CNS) intravenously in a mouse model is also explored.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available