4.8 Article

Synthetically controlling dendrimer flexibility improves delivery of large plasmid DNA

Journal

CHEMICAL SCIENCE
Volume 8, Issue 4, Pages 2923-2930

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sc00097a

Keywords

-

Funding

  1. Australian Research Council (ARC)
  2. National Health & Medical Research Council (NHMRC) of Australia
  3. University, State and Commonwealth Governments
  4. Cancer Council Western Australia
  5. National Breast Cancer Foundation [NC-14-026] Funding Source: researchfish

Ask authors/readers for more resources

Tools for editing the genome and epigenome have revolutionised the field of molecular biology and represent a new frontier in targeted therapeutic intervention. Although efficiencies and specificities of genome editing technologies have improved with the development of TALEs and CRISPR platforms, intracellular delivery of these larger constructs still remains a challenge using existing delivery agents. Viral vectors, including lentiviruses and adeno-associated viruses, as well as some non-viral strategies, such as cationic polymers and liposomes, are limited by packaging capacity, poor delivery, toxicity, and immunogenicity. We report a highly controlled synthetic strategy to engineer a flexible dendritic polymer using click chemistry to overcome the aforementioned delivery challenges associated with genome engineering technologies. Using a systematic approach, we demonstrate that high transfection efficiencies and packaging capacity can be achieved using this non-viral delivery methodology to deliver zinc fingers, TALEs and CRISPR/dCas9 platforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available