4.7 Article

Highly efficient photocatalytic H2 evolution using TiO2 nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts

Journal

APPLIED SURFACE SCIENCE
Volume 416, Issue -, Pages 957-964

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2017.04.221

Keywords

Photocatalysis; Hydrogen production; Metal phosphides; TiO2

Funding

  1. National Natural Science Foundation of China [51422604, 21276206]
  2. National 863 Program of China [2013AA050402]
  3. China Fundamental Research Funds for the Central Universities

Ask authors/readers for more resources

In this work, electrocatalysts like the metal phosphides Ni2P, NiCoP, and FeP, can serve as cocatalysts of TiO2 to form efficient composite photocatalysts for hydrogen generation from an aqueous methanol solution. On comparing Ni2P, NiCoP, and FeP and optimizing their proportions, the NiCoP(1 wt%)/TiO2 composite was found to exhibit the highest activity toward photocatalytic H-2 production (1.54 mu mol h(-1) mg(-1)), which is about thirteen times that of the naked TiO2 nanoparticles. Mott-Schottky (MS) analysis indicated that the large upward shift or band bending of the Fermi energy level (EF) in metal phosphides was responsible for the enhanced activity of the composites. The steadystate photoluminescence (PL) spectra and photocurrent transient response further confirmed that the enhanced photoinduced charge transfer and band separation after TiO2 was integrated with the metal phosphides. Thus, these electrocatalysts were shown to be efficient cocatalysts that can replace noble metals as low-cost photocatalytic H-2 production. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available