4.7 Article

MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation

Journal

EMBO MOLECULAR MEDICINE
Volume 9, Issue 9, Pages 1294-1313

Publisher

WILEY
DOI: 10.15252/emmm.201607315

Keywords

autophagy; MG132; PML-NBs; progerin; splicing

Funding

  1. Institut National de la Sante et de la Recherche Medicale
  2. Aix-Marseille University
  3. A*Midex Foundation (Program VinTAGE)
  4. Association Francaise contre les Myopathies (AFM) [TRIM-RD 2016-2020]
  5. Investissement d'avenir French government [ANR-11-IDEX-001-02]

Ask authors/readers for more resources

Hutchinson-Gilford progeria syndrome (HGPS) is a lethal premature and accelerated aging disease caused by a de novo point mutation in LMNA encoding A-type lamins. Progerin, a truncated and toxic prelamin A issued from aberrant splicing, accumulates in HGPS cells' nuclei and is a hallmark of the disease. Small amounts of progerin are also produced during normal aging. We show that progerin is sequestered into abnormally shaped promyelocytic nuclear bodies, identified as novel biomarkers in late passage HGPS cell lines. We found that the proteasome inhibitor MG132 induces progerin degradation through macroautophagy and strongly reduces progerin production through downregulation of SRSF-1 and SRSF-5 accumulation, controlling prelamin A mRNA aberrant splicing. MG132 treatment improves cellular HGPS phenotypes. MG132 injection in skeletal muscle of LmnaG609G/G609G mice locally reduces SRSF-1 expression and progerin levels. Altogether, we demonstrate progerin reduction based on MG132 dual action and shed light on a promising class of molecules toward a potential therapy for children with HGPS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available