4.7 Article

Infrared-spectroscopic single-shot laser mapping ellipsometry: Proof of concept for fast investigations of structured surfaces and interactions in organic thin films

Journal

APPLIED SURFACE SCIENCE
Volume 421, Issue -, Pages 440-445

Publisher

ELSEVIER
DOI: 10.1016/j.apsusc.2016.08.140

Keywords

Infrared-spectroscopic single-shot laser mapping ellipsometry; Structured surfaces; Molecular interactions

Funding

  1. European Union through the Pro FIT program [10153595]
  2. Ministerium fur Innovation, Wissenschaft und Forschung des Landes Nordrhein-Westfalen
  3. Senatsverwaltung fur Wirtschaft, Technologie und Forschung des Landes Berlin
  4. Bundesministerium fur Bildung und Forschung

Ask authors/readers for more resources

We present a novel infrared-spectroscopic laser mapping ellipsometer based on a single-shot measurement concept. The ellipsometric set-up employs multiple analyzers and detectors to simultaneously measure the sample's optical response under different analyzer azimuths. An essential component is a broadly tunable quantum cascade laser (QCL) covering the important marker region of 1800-1540 cm(-1). The ellipsometer allows for fast single-wavelength as well as spectroscopic studies with thin-film sensitivity at temporal resolutions of 60 ms per wavelength. We applied the single-shot mapping ellipsometer for the characterization of metal-island enhancement surfaces as well as of molecular interactions in organic thin films. In less than 3 min, a linescan with 1600 steps revealed profile and infrared-enhancement properties of a gradient gold-island film for sensing applications. Spectroscopic measurements were performed to probe the amide I band of thin films of poly(N-isopropylacrylamide) [PNIPAAm], a stimuli-responsive polymer for bioapplications. The QCL spectra agree well with conventional FT-IR ellipsometric results, showing different band components associated with hydrogen-bond interactions between polymer and adsorbed water. Multi-wavelength ellipsometric maps were used to analyze homogeneity and surface contaminations of the polymer films. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available