4.7 Article

Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment

Journal

URBAN CLIMATE
Volume 21, Issue -, Pages 106-122

Publisher

ELSEVIER
DOI: 10.1016/j.uclim.2017.05.009

Keywords

PM2.5; Organic carbon; Elemental carbon; Positive matrix factorization

Ask authors/readers for more resources

In this paper, the chemical constitutes of PM2.5 mass [organic carbon (OC), elemental carbon (EC), water soluble inorganic ionic components (WSIC), and trace elements] was estimated for its chemical characteristics and source apportionment study at Delhi, India during January 2013 to May 2014. In the present case, the average mass concentration of PM2.5 was recorded as 125.5 +/- 77.2 mu g m(-3) (range: 31.1-429.5 mu g m(-3)). The average concentration of major and trace elements (Na, Mg, Al, P, S, Cl, K, Ca, Cr, Ti, AS, Br, Pb, Fe, Zn and Mn) was accounted for similar to 22% of PM2.5 mass. Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon seasons. The chemical composition of the PM2.5 was reconstructed using IMPROVE equation from the analyzed elemental composition of PM2.5 mass. In reconstructed PM2.5 mass, the highest contribution accounted from particulate organic matter (27.5%) to other components e.g., soil/crustal matter (16.1%), ammonium sulphate (16.1%), ammoniumnitrate (13.1%), sea salt (17.1%) and light absorbing carbon (10.2%). In the present study, Positive Matrix Factorization (PMF) was used for identifying the PM2.5 sources at the observational site of Delhi. The major source of PM2.5 was identified as secondary aerosols (23.2%), soil dust (22.5%), vehicle emissions (18.5%), fossil fuel burning (13.1%), biomass burning (12.3%), industrial emissions (6.3%) and sea salts (4.1%) at Delhi. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available