4.8 Article

Enhancing Performance of Nonfullerene Acceptors via Side-Chain Conjugation Strategy

Journal

ADVANCED MATERIALS
Volume 29, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201702125

Keywords

electron acceptors; nonfullerene; polymer solar cells; side-chain conjugation; 2D conjugation

Funding

  1. 973 Program [2013CB834702]
  2. National Natural Science Foundation of China [91433114]
  3. Office of Naval Research [N000141410221]
  4. National Science Foundation [DMR-1507249]
  5. Ministry of Science and Technology [2016YFA0200700]
  6. NSFC [21504066, 21534003]
  7. Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy [DE-AC02-05CH11231]

Ask authors/readers for more resources

A side-chain conjugation strategy in the design of nonfullerene electron acceptors is proposed, with the design and synthesis of a side-chain-conjugated acceptor (ITIC2) based on a 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]di(cyclopenta-dithiophene) electron-donating core and 1,1-dicyanomethylene-3-indanone electron-withdrawing end groups. ITIC2 with the conjugated side chains exhibits an absorption peak at 714 nm, which redshifts 12 nm relative to ITIC1. The absorption extinction coefficient of ITIC2 is 2.7 x 10(5)m(-1) cm(-1), higher than that of ITIC1 (1.5 x 10(5)m(-1) cm(-1)). ITIC2 exhibits slightly higher highest occupied molecular orbital (HOMO) (-5.43 eV) and lowest unoccupied molecular orbital (LUMO) (-3.80 eV) energy levels relative to ITIC1 (HOMO: -5.48 eV; LUMO: -3.84 eV), and higher electron mobility (1.3 x 10(-3) cm(2) V-1 s(-1)) than that of ITIC1 (9.6 x 10(-4) cm(2) V-1 s(-1)). The power conversion efficiency of ITIC2-based organic solar cells is 11.0%, much higher than that of ITIC1-based control devices (8.54%). Our results demonstrate that side-chain conjugation can tune energy levels, enhance absorption, and electron mobility, and finally enhance photovoltaic performance of nonfullerene acceptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available