4.7 Article

Statistical characterization of pulsar glitches and their potential impact on searches for continuous gravitational waves

Journal

PHYSICAL REVIEW D
Volume 96, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.96.063004

Keywords

-

Funding

  1. STFC
  2. NewCompStar (a COST-funded Research Networking Programme)
  3. STFC [ST/M000931/1] Funding Source: UKRI
  4. Science and Technology Facilities Council [ST/M000931/1] Funding Source: researchfish

Ask authors/readers for more resources

Continuous gravitational waves from neutron stars could provide an invaluable resource to learn about their interior physics. A common search method involves matched filtering a modeled template against the noisy gravitational-wave data to find signals. This method suffers a mismatch (i.e., relative loss of the signal-to-noise ratio) if the signal deviates from the template. One possible instance in which this may occur is if the neutron star undergoes a glitch, a sudden rapid increase in the rotation frequency seen in the timing of many radio pulsars. In this work, we use a statistical characterization of the glitch rate and size in radio pulsars to estimate how often neutron star glitches would occur within the parameter space of continuous gravitational-wave searches and how much mismatch putative signals would suffer in the search due to these glitches. We find that for many previous and potential future searches continuous-wave signals have an elevated probability of undergoing one or more glitches and that these glitches will often lead to a substantial fraction of the signal-to-noise ratio being lost. This could lead to a failure to identify candidate gravitational-wave signals in the initial stages of a search and also to the false dismissal of candidates in subsequent follow-up stages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available