4.6 Article

Bioresponsive-controlled release of methylene blue from magnetic mesoporous silica from the electrochemical detection of telomerase activity

Journal

ANALYST
Volume 142, Issue 18, Pages 3477-3483

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7an01127j

Keywords

-

Funding

  1. National Natural Science Foundation of China [21305029, 21477033]
  2. Doctoral Program of Higher Education of China [20134103120002]

Ask authors/readers for more resources

An electrochemical sensing platform was designed to monitor telomerase activity in HeLa cells, using bioresponsively controlled cargo release from magnetic mesoporous silica nanocontainers (MMSNs). The aminated MMSNs were first synthesized by a wet-chemistry method, then methylene blue (indicator) molecules were loaded into the pores with the aid of specifically designed wrapping DNA strands, and then the wrapping DNA-gated MMSNs were immobilized on a magnetic removable screen-printing carbon electrode. Upon target telomerase and dNTP introduction into the detection cell, the wrapping DNA strands on the MMSNs were prolonged to form rigid hairpin-like DNA structures, thus resulting in the dissociation of wrapping DNA strands from the MMSNs. Thereafter, the loaded methylene blue with redox activity was released out from the pores, thereby causing the increase in the electrochemical signal relative to the background signal. Under optimal conditions, an MMSN-based sensing system exhibited good voltammetric responses toward target telomerase activity within the dynamic linear range of 50-5000 cells per mL at a detection limit of 12 cells per mL in the HeLa extract. The reproducibility and generality of our strategy were acceptable by using somatic tumor cell lines. In addition, the inhibition effect of this system was also evaluated by using 3'-azido-3'-deoxythymidine as a telomerase inhibitor, receiving good results in this screening research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available