4.6 Article

Structure-Property Relationships of Poly(ethylene carbonate) and Poly(propylene carbonate)

Journal

ACS OMEGA
Volume 2, Issue 8, Pages 4808-4819

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00964

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [16K05906]
  2. Grants-in-Aid for Scientific Research [16K05906] Funding Source: KAKEN

Ask authors/readers for more resources

Conformational characteristics of poly(ethylene carbonate) (PEC) and poly(propylene carbonate) (PPC) have been revealed via molecular orbital (MO) calculations and nuclear magnetic resonance (NMR) experiments on model compounds with the same bond sequences as those of the polycarbonates. Bond conformations derived from the MO calculations on the models were in exact agreement with those from the NMR experiments. Both PEC and PPC were indicated to adopt distorted conformations including a number of gauche bonds and cover themselves with negative charges, thus failing to form a regular packing and remaining amorphous. The MO data were applied to the refined rotational isomeric state (RIS) calculations to yield configurational properties such as the characteristic ratio, its temperature coefficient, the configurational entropy, and average geometrical parameters of unperturbed PEC and PPC chains. In the RIS calculations on PPC, the regio- and stereosequences were generated according to the Bernoulli trial or Markov stochastic process. In consequence, it was shown that the configurational properties of PPC do not depend significantly on its regio-and stereoregularities. The internal energy contribution to rubberlike chain elasticity, calculated from the temperature coefficient of the characteristic ratio, has indicated the possibility that PEC and PPC will behave as elastomers. The practical applications and utilizations of the polycarbonates are discussed on the basis of the conformational characteristics and configurational properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available