4.8 Article

Photostriction of CH3NH3PbBr3 Perovskite Crystals

Journal

ADVANCED MATERIALS
Volume 29, Issue 35, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201701789

Keywords

CH3NH3PbBr3; perovskites; photostriction; Raman

Funding

  1. King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) [OSR-2016-CRG5-3005]
  2. KAUST solar center [FCC/1/3079-08-01]
  3. KAUST

Ask authors/readers for more resources

Organic-inorganic hybrid perovskite materials exhibit a variety of physical properties. Pronounced coupling between phonon, organic cations, and the inorganic framework suggest that these materials exhibit strong light-matter interactions. The photoinduced strain of CH3NH3PbBr3 is investigated using high-resolution and contactless in situ Raman spectroscopy. Under illumination, the material exhibits large blue shifts in its Raman spectra that indicate significant structural deformations (i.e., photostriction). From these shifts, the photostrictive coefficient of CH3NH3PbBr3 is calculated as 2.08 x 10(-8) m(2) W-1 at room temperature under visible light illumination. The significant photostriction of CH3NH3PbBr3 is attributed to a combination of the photovoltaic effect and translational symmetry loss of the molecular configuration via strong translation-rotation coupling. Unlike CH3NH3PbI3, it is noted that the photostriction of CH3NH3PbBr3 is extremely stable, demonstrating no signs of optical decay for at least 30 d. These results suggest the potential of CH3NH3PbBr3 for applications in next-generation optical micro-electromechanical devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available