4.1 Article

Design of a multimodal (1H/23Na MR/CT) anthropomorphic thorax phantom

Journal

ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK
Volume 27, Issue 2, Pages 124-131

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.zemedi.2016.07.004

Keywords

Anthropomorphic phantom; thorax phantom; multimodal imaging; multi-nuclear MRI; quantification

Funding

  1. German Federal Ministry of Education and Research (BMBF) [13GW0092D]

Ask authors/readers for more resources

Objectives: This work proposes a modular, anthropomorphic MR and CT thorax phantom that enables the comparison of experimental studies for quantitative evaluation of deformable, multimodal image registration algorithms and realistic multi-nuclear MR imaging techniques. Methods: A human thorax phantom was developed with insertable modules representing lung, liver, ribs and additional tracking spheres. The quality of human tissue mimicking characteristics was evaluated for H-1 and Na-23 MR as well as CT imaging. The position of landmarks in the lung lobes was tracked during CT image acquisition at several positions during breathing cycles. 1H MR measurements of the liver were repeated after seven months to determine long term stability. Results: The modules possess HU, T-1 and T-2 values comparable to human tissues (lung module: 756 +/- 148 HU, artificial ribs: 218 +/- 56 HU (low CaCO3 concentration) and 339 +/- 121 (high CaCO3 concentration), liver module: T-1 = 790 +/- 28 ms, T-2 = 65 +/- 1 ms). Motion analysis showed that the landmarks in the lung lobes follow a 3D trajectory similar to human breathing motion. The tracking spheres are well detectable in both CT and MRI. The parameters of the tracking spheres can be adjusted in the following ranges to result in a distinct signal: HU values from 150 to 900 HU, T-1 relaxation time from 550 ms to 2000 ms, T-2 relaxation time from 40 ms to 200 ms. Conclusion: The presented anthropomorphic multimodal thorax phantom fulfills the demands of a simple, inexpensive system with interchangeable components. In future, the modular design allows for complementing the present set up with additional modules focusing on specific research targets such as perfusion studies, Na-23 MR quantification experiments and an increasing level of complexity for motion studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available