4.7 Review

Stress and the nonsense-mediated RNA decay pathway

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 74, Issue 19, Pages 3509-3531

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-017-2537-6

Keywords

Stress granules; Autophagy; Apoptosis; eIF2 alpha phosphorylation

Funding

  1. NIH [RO1 GM111838]
  2. NIH P42 Superfund Training grant [ES010337]

Ask authors/readers for more resources

Cells respond to internal and external cellular stressors by activating stress-response pathways that re-establish homeostasis. If homeostasis is not achieved in a timely manner, stress pathways trigger programmed cell death (apoptosis) to preserve organism integrity. A highly conserved stress pathway is the unfolded protein response (UPR), which senses excessive amounts of unfolded proteins in the ER. While a physiologically beneficial pathway, the UPR requires tight regulation to provide a beneficial outcome and avoid deleterious consequences. Recent work has demonstrated that a conserved and highly selective RNA degradation pathway-nonsense-mediated RNA decay (NMD)-serves as a major regulator of the UPR pathway. NMD degrades mRNAs encoding UPR components to prevent UPR activation in response to innocuous ER stress. In response to strong ER stress, NMD is inhibited by the UPR to allow for a full-magnitude UPR response. Recent studies have indicated that NMD also has other stress-related functions, including promoting the timely termination of the UPR to avoid apoptosis; NMD also regulates responses to non-ER stressors, including hypoxia, amino-acid deprivation, and pathogen infection. NMD regulates stress responses in species across the phylogenetic scale, suggesting that it has conserved roles in shaping stress responses. Stress pathways are frequently constitutively activated or dysregulated in human disease, raising the possibility that NMD therapy'' may provide clinical benefit by downmodulating stress responses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available