4.7 Article

Multifunctional ZnO nanorod-reduced graphene oxide hybrids nanocomposites for effective water remediation: Effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 325, Issue -, Pages 588-600

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.05.105

Keywords

Reduced graphene oxide (rGO); ZnO nanorods; Nanocomposites; Visible photocatalysis; Heavy metal adsorption

Funding

  1. Scientific & Technological Research Council of Turkey (TUBITAK), BIDEB 2216-Fellowships for Research Fellowship Programme for Foreign Citizens)
  2. Turkish Academy of Sciences - Outstanding Young Scientists Award Program (TUBA-GEBIP)-Turkey

Ask authors/readers for more resources

We demonstrate the multi-functionality engineering on nanocomposite by combining one dimensional (1D) ZnO nanorod (NR) and two dimensional (2D) reduced graphene oxide (rGO) for efficient water remediation. Nano-engineered ZnO NR-rGO nanocomposites show efficient water remediation in terms of degradation of organic dyes and removal of heavy metal ions. Herein, we report on the fabrication of ZnO NR-rGO nanocomposite via a facile template-free hydrothermal route with an aim to improve the visible photocatalytic efficiency of the ZnO NR based nanocomposites. The structural and morphological features reveal that the rGO sheets are attached on the ZnO NRs and form a hybrid composite assembly. The surface enabled ZnO NR-rGO nanocomposites were used to degrade organic dye molecules (methylene blue (MB), methyl orange (MO) and rhodamine B (RhB)) under visible irradiation and adsorb Cu (II) and Co (II) ions from water through an adsorption process. The nanocomposite containing 7.5 wt% rGO and ZnO NRs shows a 4-fold enhancement in the visible photocatalytic activity and effective removal of Cu (II) and Co (II) ions from aqueous solution respectively. The photocatalytic performance is discussed in detail with respect to interaction between ZnO NRs and rGO sheets, light-harvesting properties of the nanocomposites. The effective experimental adsorption data also fit very well with the pseudo-second order model which reveals the surface adsorption of metal ions. The results provide insight into a new method utilize for both visible photo degradation and adsorption for the removal of various wastewater pollutants. Construction of hybrid form of nanostructures delivers the effective catalytic properties with tunable functionalities for the water remediation. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available