4.1 Article

Natural Variation in Responses to Acute Heat and Cold Stress in a Sea Anemone Model System for Coral Bleaching

Journal

BIOLOGICAL BULLETIN
Volume 233, Issue 2, Pages 168-181

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/694890

Keywords

-

Funding

  1. National Science Foundation Graduate Research Fellowship [0946928]
  2. Division Of Graduate Education
  3. Direct For Education and Human Resources [0946928] Funding Source: National Science Foundation

Ask authors/readers for more resources

Rising ocean temperatures disrupt the symbiosis between corals and their microalgae, accelerating global decline of coral reef ecosystems. Because of the difficulty of performing laboratory experiments with corals, the sea anemone Aiptasia has emerged as an important model system for molecular studies of coral bleaching and symbiosis. Here, we investigate natural variation in bleaching responses among different genetic lineages of Aiptasia. Both heat- and cold-induced paths to symbiosis breakdown were analyzed. Significant genetic variation in response to acute heat stress was observed, with severe bleaching of two Aiptasia strains from Hawaii but minimal bleaching of strains from the U.S. South Atlantic, including the strain used to generate the Aiptasia reference genome. Both strains from Hawaii hosted Symbiodinium type B1, whereas strains from the U.S. South Atlantic hosted type A4 or B2. In contrast to the results from exposures to acute heat stress, negligible variation was observed in response to a pulsed cold shock despite moderate bleaching across all strains. These results support our hypothesis that bleaching responses to distinct stressors are independent. Our findings emphasize the role of stress regime when predicting adaptive responses of symbiotic cnidarians to changing climates, because genetic variation may exist for some forms of stress-induced bleaching but not others.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available