4.7 Article

Opposing effects on cardiac function by calorie restriction in different-aged mice

Journal

AGING CELL
Volume 16, Issue 5, Pages 1155-1167

Publisher

WILEY
DOI: 10.1111/acel.12652

Keywords

AMPK; autophagy; calorie restriction; cardiac aging; FOXO

Funding

  1. National Natural Science Foundation of China [91649122, 81100236, 81501201]
  2. Natural Science Foundation of Jiangsu Province of China [BK20151032]

Ask authors/readers for more resources

Calorie restriction (CR) increases average and maximum lifespan and exhibits an apparent beneficial impact on age-related diseases. Several studies have shown that CR initiated either in middle or old age could improve ischemic tolerance and rejuvenate the aging heart; however, the data are not uniform when initiated in young. The accurate time to initiate CR providing maximum benefits for cardiac remodeling and function during aging remains unclear. Thus, whether a similar degree of CR initiated in mice of different ages could exert a similar effect on myocardial protection was investigated in this study. C57BL/6 mice were subjected to a calorically restricted diet (40% less than the ad libitum diet) for 3 months initiated in 3, 12, and 19 months. It was found that CR significantly reversed the aging phenotypes of middle-aged and old mice including cardiac remodeling (cardiomyocyte hypertrophy and cardiac fibrosis), inflammation, mitochondrial damage, telomere shortening, as well as senescence-associated markers but accelerated in young mice. Furthermore, whole-genome microarray demonstrated that the AMP-activated protein kinase (AMPK)-Forkhead box subgroup 'O' (FOXO) pathway might be a major contributor to contrasting regulation by CR initiated in different ages; thus, increased autophagy was seen in middle-aged and old mice but decreased in young mice. Together, the findings demonstrated promising myocardial protection by 40% CR should be initiated in middle or old age that may have vital implications for the practical nutritional regimen.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available