4.7 Article

Predicting occupancy counts using physical and statistical Co2-based modeling methodologies

Journal

BUILDING AND ENVIRONMENT
Volume 123, Issue -, Pages 517-528

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2017.07.027

Keywords

Carbon dioxide; Occupant counting; Large occupant numbers; Physical model; Statistical model

Funding

  1. National University of Singapore under CiBEST (BEE Hub) [C-296-000-029-001]

Ask authors/readers for more resources

Energy consumption and indoor environment quality (IEQ) of buildings have been linked to human occupants. Predicting the number of occupants in a space is essential for the effective management of various building operation functions as well as improve energy efficiency. This study is the first to compare the performance of physical and statistical models in predicting occupant counts in a high volume lecture theatre (Occ = 200) using CO2 sensors. CO2 measurements and actual occupant numbers were obtained for 4 months to provide robust data comparison of the methodologies. It was found that that the dynamic physical models and Support Vector Machines (SVM) and Artificial Neural Networks (ANN) models utilizing a combination of average and first order differential CO2 concentrations performed the best in terms of predicting occupancy counts with the ANN and SVM models showing higher predictive performance. RMSE values for the corresponding models were 12.8, 12.6 and 12.1 respectively and correlation coefficients were all greater than 0.95. The relatively good agreement between dynamic physical model predictions and ground truth shows that the dynamic mass balanced model is adequate for predicting occupancy counts provided that the air exchange rates measured are accurate. Model average accuracies across all tolerance was between 70 and 76% demonstrating good performance for a large number of occupants. A discussion on the merits and limitations of each model types was presented to provide guidance on the adoption of various models. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available