4.7 Article

HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease

Journal

AGING CELL
Volume 16, Issue 5, Pages 1073-1082

Publisher

WILEY
DOI: 10.1111/acel.12642

Keywords

Alzheimer's disease; beta-amyloid; histone deacetylase3; spatial memory

Funding

  1. National Natural Science Foundation of China [81200839, 81671055, 81300988, 81230026, 81630028, 81171085]
  2. Jiangsu Provinical Key Medical Discipline [ZDXKA2016020]

Ask authors/readers for more resources

The accumulation and deposition of beta-amyloid (A beta) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6-and 9-month-old APPswe/PS1dE9 (APP/PS1) mice compared with that in age-matched wild-type C57BL/6 (B6) mice. Lentivirus mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and A beta levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9-month-old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Ab levels, activates microglia, and decreases dendritic spine density in 6-month-old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available