4.7 Article

Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesa.2017.06.003

Keywords

Nanoparticles; Polymer-matrix composites (PMCs); Thermoplastic resin; Electrical properties

Funding

  1. National Natural Science Foundation [51603193, 11572290, 11432003]
  2. National Natural Science Foundation of China-Henan Province Joint Funds [U1604253]
  3. China Postdoctoral Science Foundation [2015M580637, 2016T90675]
  4. State Key Laboratory of Polymer Materials Engineering (Sichuan University) [sklpme2016-4-21]
  5. Special Science Foundation for Excellent Youth Scholars of Zhengzhou University [1421320041]

Ask authors/readers for more resources

Conductive elastomer composites based strain sensors have attracted increasing attention recently. In this paper, flexible composites were prepared by incorporating thermoplastic polyurethane (TPU) with zero-dimensional carbon black (CB) and one-dimensional carbon nanotubes (CNTs), respectively. CNTs/TPU showed a lower percolation threshold (0.28 wt.%) and wider sensing range (0-ca.135% strain), compared with CB/TPU (1.00 wt.% and 0-ca. 90% strain). CB/TPU composites exhibited a higher sensitivity with a GF of 10.8 under 20% strain, while CNTs/TPU showed a lower GF of 6.8. In cyclic loading unloading test, both the two composites showed non-monotonic 'shoulder peak' behaviors. For CB/TPU, the 'first peak' was higher than the 'second peak'; interestingly, CNTs/TPU presented a negative strain effect. The discrepancy was mainly ascribed to the difference of filler dimensionality and the evolution of the conductive network. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available