4.4 Article

Genetic Algorithm Based Demand Side Management for Smart Grid

Journal

WIRELESS PERSONAL COMMUNICATIONS
Volume 93, Issue 2, Pages 481-502

Publisher

SPRINGER
DOI: 10.1007/s11277-017-3959-z

Keywords

Smart Grid; Demand Side Management; Load redistribution; Flexible load shaping; Genetic Algorithm

Ask authors/readers for more resources

Electricity usage at electricity rush hour (peak hour) may vary from each and every service area such as industrial area, commercial area and residential area. Equalizing the power consumption in industry may lead to the utilization of power in other service areas in an efficient way. Although industries have comparably lesser number of power consuming device types than other service areas the power consumption is quite high. To meet the demands rising in the industry, shiftable loads (devices) can be redistributed equally to all the working time slots based on the average power utilization. It can be done in a flexible manner by shaping the loads using Demand Side Management (DSM) technique in Smart Grid. The main objective is to minimize the power utilization during the electricity rush hour by effectively distributing the power available during off-peak hour. Evolutionary algorithm can be well adapted to problems where optimization is the core criteria. Any maximization or minimization problem can be solved efficiently using evolutionary algorithm. Hence, to obtain the optimized fitness function of load redistribution in industry Genetic Algorithm in Demand Side Management (GA-DSM) is chosen and it has benefited with an overall reduction of 21.91% which is very remarkable. In addition to this the evaluation of the fitness function using GA-DSM is carried out in other two industrial dataset models (steel plant and wind power plant) which is unavailable so far in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available