4.8 Article

Structure-Property Correlations of Reactive Oxygen Species-Responsive and Hydrogen Peroxide-Eliminating Materials with Anti-Oxidant and Anti-Inflammatory Activities

Journal

CHEMISTRY OF MATERIALS
Volume 29, Issue 19, Pages 8221-8238

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.7b02412

Keywords

-

Funding

  1. National Natural Science Foundation of China [81471774]
  2. Research Foundation of the Third Military Medical University [2014XJY04]
  3. Graduate Student Research Innovation Project of Chongqing

Ask authors/readers for more resources

To develop reactive oxygen species (ROS)responsive anti-inflammatory materials and establish their structure-property correlations, a series of H2O2-eliminating materials (OxbCDs) were designed and synthesized by conjugating different phenylboronic acid pinacol ester (PBAP) groups onto a biocompatible scaffold compound beta-cyclodextrin via varied linker groups. Both the H2O2-triggered hydrolysis profiles and H2O2-eliminating capacities of these materials were dependent on the chemical structure of the PBAP moieties. Together with the elucidation of hydrolysis mechanisms, we established structure-property correlations of these OxbCD materials. Extensive in vitro experiments revealed nanoparticles (NPs) based on OxbCDs showed no adverse biological effects on normal cells. OxbCD NPs could effectively inhibit inflammatory responses and oxidative stress in stimulated macrophages. Consistently, OxbCD NPs efficaciously alleviated the symptoms of peritonitis in mice, with respect to reducing the counts of neutrophils and macrophages as well as inhibiting the secretion of pro-inflammatory cytokines, chemokines, and oxidative mediators. Similarly, OxbCD NPs loaded with anti-inflammatory drugs displayed superior efficacy in an acute inflammation model of peritonitis in mice. More importantly, OxbCD NPs showed good biocompatibility after administration via different routes. Consequently, besides serving as anti-inflammatory materials, the newly developed H2O2-eliminating materials may be utilized as pharmacologically functional carriers for targeted therapy of many diseases associated with inflammation and oxidative stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available