4.8 Article

Colorimetric Nanofibers as Optical Sensors

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 27, Issue 38, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201702646

Keywords

colorimetric sensors; nanofibers; optical sensors; solvent-electrospinning

Funding

  1. Ghent University
  2. Research Foundation of Flanders (FWO)
  3. FWO Strategic Basic Research grant [1S05517N]

Ask authors/readers for more resources

Sensors play a major role in many applications today, ranging from biomedicine to safety equipment, where they detect and warn us about changes in the environment. Nanofibers, characterized by high porosity, flexibility, and a large specific surface area, are the ideal material for ultrasensitive, fastresponding, and user-friendly sensor design. Indeed, a large specific surface area increases the sensitivity and response time of the sensor as the contact area with the analyte is enlarged. Thanks to the flexibility of membranes, nanofibrous sensors cannot only be applied in high-end analyte detection, but also in personal, daily use. Many different nanofibrous sensors have already been designed; albeit, the most straightforward and easiest-to-interpret sensor response is a visual change in color, which is of particular interest in the case of warning signals. Recently, many researchers have focused on the design of so-called colorimetric nanofibers, which typically involve the incorporation of a colorimetric functionality into the nanofibrous matrix. Many different strategies have been used and explored for colorimetric nanofibrous sensor design, which are outlined in this feature article. The many examples and applications demonstrate the value of colorimetric nanofibers for advanced optical sensor design, and could provide directions for future research in this area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available