4.6 Article Proceedings Paper

Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-Amino-2-Methyl-1-Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri-solvent blend for carbon dioxide (CO2) capture

Journal

CHEMICAL ENGINEERING SCIENCE
Volume 170, Issue -, Pages 26-35

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ces.2017.03.025

Keywords

Heat duty; Absorption heat; Vaporization heat; Sensible heat; Specific heat capacity; ProMax 4.0 (R) simulation; Modeling; MEA PZ and AMP

Funding

  1. NPRP from Qatar National Research Fund (a member of Qatar Foundation) [7 - 1154 - 2 - 433]
  2. Saskatchewan Innovation and Opportunity Graduate Scholarship

Ask authors/readers for more resources

Chemical absorption using reactive amines for carbon dioxide (CO2) capture is characterized by absorption heat, heat of desorption and heat duty for regeneration (Qreg, kJ/mol CO2). This study experimentally investigated the heat duty of tri-solvent blends containing AMP-PZ-MEA and the individual contribution of desorption heat, sensible heat and heat of vaporization to heat duty. The experimental conditions for absorption were 15 v/v% CO2 at 40 degrees C and atmospheric pressure while desorption was carried out 90 degrees C for loaded amine also at atmospheric pressure. The heat of desorption was experimentally determined using the specific heat capacity (kJ/kg degrees C) difference between the CO2 free and CO2 saturated amine solutions at the stated absorption conditions. Results showed that the heat duty of all the tri-solvent blends was significantly lower than that of the standard 5 kmol/m(3) MEA. Interestingly, the AMP-PZ-MEA tri-solvent blends exhibited only slightly lower heats of absorption when compared to MEA; however, they also showed significantly lower sensible heat and slightly lower heat of vaporization. Consequently, the tri-solvent blends exhibited significantly lower heat duties than the standard 5 kmol/m(3) MEA. In addition, a model analogous to a power law kinetic model was developed and used to predict the specific heat capacity of the AMP-PZ-MEA tri-solvent blends. The model accurately predicted the experimental results with an AAD of 0.59%. The overall results highlight the potential of using AMP-PZ-MEA blends for CO2 capture. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available