4.7 Article

Pregnane X receptor (PXR) deficiency improves high fat diet-induced obesity via induction of fibroblast growth factor 15 (FGF15) expression

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 142, Issue -, Pages 194-203

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2017.07.019

Keywords

PXR; FGF15; Obesity; Bile acids

Funding

  1. National Natural Science Foundation of China [31500946]
  2. Science and Technology Department of Zhejiang Province of China [201703128]
  3. Department of Medical Technology and Education of Zhejiang Province of China [2016KYA134]
  4. Science and Technology Bureau of Wenzhou of China [Y20150089]
  5. Department of Education of Zhejiang Province of China [Y201534186]
  6. Wenzhou Medical University of China [QTJ13011]

Ask authors/readers for more resources

Obesity has become a significant global health problem, and is a high risk factor for a variety of metabolic diseases. Fibroblast growth factor (FGF) 15 plays an important role in the regulation of metabolism. Xenobiotic-sensing nuclear receptors pregnane X receptor (PXR/NR1I2) and constitutive androstane receptor (CAR/NR1I3) play important roles in xenobiotic detoxification and metabolism, and also are involved in the regulation of energy metabolism. However, the effects that PXR and CAR have on the regulation of FGF15 are unknown. Here, we found that body weight, hepatic triglyceride levels, liver steatosis, and hepatic mRNA expression levels of cholesterol 7 alpha-hydroxylase (CYP7A1) and sterol 1 at-hydroxylase (CYP8B1), the key enzymes in the bile acid classical synthesis pathway, were significantly decreased in high fat diet (HFD)-fed PXR knockout (KO) mice compared to HFD-fed wild-type mice. Interestingly, intestinal FGF15 expression levels were significantly elevated in HFD-fed PXR KO mice compared with HFD-fed wild-type mice. Additionally, serum total bile acid levels were significantly decreased in PXR KO mice than those in wild-type mice when fed a control diet or HFD. Total lipids in feces were significantly increased in HFD-fed PXR KO mice compared to HFD-fed wild-type mice. However, these alterations were not found in HFD-fed CAR KO mice. These results indicate that PXR deficiency improves HFD-induced obesity via induction of FGF15 expression, resulting in suppression of bile acid synthesis and reduction of lipid absorption, hepatic lipid accumulation and liver triglyceride levels. Our findings suggest that PXR may negatively regulate FGF15 expression and represent a potential therapeutic target for the treatment for metabolic disorders such as obesity. (C) 2017 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available