4.7 Article

Electrochemical oxidation of anesthetic tetracaine in aqueous medium. Influence of the anode and matrix composition

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 326, Issue -, Pages 811-819

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2017.04.139

Keywords

Active chlorine; BDD; Electrochemical oxidation; Hydroxyl radical; Tetracaine; Wastewater treatment

Funding

  1. AEI/FEDER, EU [CTQ2016-78616-R]
  2. FPI
  3. FONDECYT (Chile) [3150253]

Ask authors/readers for more resources

The degradation of 150 mL of 0.561 mM tetracaine hydrochloride at pH 3.0 by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2) has been studied at a low current density of 33.3 mA cm(2) in three different matrices: 0.050 M Na2SO4, real urban wastewater and a simulated matrix mimicking its electrolyte composition. Comparative trials were performed in an undivided cell with a 3 cm(2) borondoped diamond (BDD), Pt, IrO2-based or RuO2-based anode and a 3 cm(2) air-diffusion cathode that allowed continuous H2O2 electrogeneration. In 0.050 M Na2SO4, much faster and overall removal of tetracaine occurred using BDD because of the large oxidation ability of BDD((OH)-O-center dot) formed from anodic water oxidation. In either simulated matrix or real wastewater, the RuO2-based anode yielded the quickest tetracaine decay due to a large production of active chlorine from anodic oxidation of Cl . For the mineralization of the organic matter content, the BDD/air-diffusion cell was the best choice in all aqueous matrices, always reaching more than 50% of total organic carbon abatement after 360 min of electrolysis, as expected if BDD((OH)-O-center dot) mineralizes more easily the chloroderivatives formed from tetracaine oxidation in the presence of active chlorine. The initial N of tetracaine was partly transformed into NO3, although the total nitrogen of all solutions always decayed by the release of volatile by-products. In the Cl - containing matrices, significant amounts of ClO3 and ClO4 were obtained using BDD, whereas active chlorine was much largely produced using the RuO2-based anode. Five aromatic by-products, one of them being chlorinated, along with low concentrations of oxalic acid were identified. The change in toxicity during EO-H2O2 with BDD in the sulfate and simulated matrices was also assessed. (C) 2017 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available