4.6 Article

Photo-thermal study of a layer of randomly distributed gold nanoparticles: from nano-localization to macro-scale effects

Journal

JOURNAL OF PHYSICS D-APPLIED PHYSICS
Volume 50, Issue 43, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1361-6463/aa8618

Keywords

plasmonics; thermo-plasmonics; nanoparticles; optics

Funding

  1. Italian Project 'NanoLase'-PRIN [2012JHFYMC]
  2. CNR User Facility 'Materials and processes BEYOND the NANO scale', Beyond 'Nano, Pole of Cosenza [PONa3-00362]
  3. Air Force Office of Scientific Research (AFOSR)
  4. Air Force Research Laboratory (AFRL)
  5. US Air Force [FA9550-14-1-0050]

Ask authors/readers for more resources

We present an experimental characterization and a comprehensive theoretical modeling of macroscopic plasmonic heat production that takes place in a single layer of small gold nanoparticles (GNPs), randomly distributed on a glass substrate, covered with different host media and acted on by a resonant radiation. We have performed a detailed experimental study of the temperature variations of three different systems, obtained by varying the density of nanoparticles. Due to the macroscopic dimension of the spot size, the used laser irradiates a huge number of nanoparticles, inducing a broad thermo-plasmonic effect that modifies the thermal conductivity of the entire system; starting from the state of art, we have implemented a simple model that enables to evaluate the resulting new thermal conductivity. We have also extended our theoretical approach to the macroscale, including an analysis of the effects predicted for different NP densities and laser spot size values, as well as for different values of the laser intensity, which can be as low as 0.05 W cm(-2). Theoretically predicted temperature variations are in excellent agreement with experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available