4.7 Article

The effect of HPMC and MC as pore formers on the rheology of the implant microenvironment and the drug release in vitro

Journal

CARBOHYDRATE POLYMERS
Volume 177, Issue -, Pages 433-442

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2017.08.135

Keywords

Rheology of implant microenvironment; Hot melt extrusion; Porous implant/scaffold; Extended release; Hydroxypropyl methylcellulose; Methylcellulose

Funding

  1. Danish Council for Independent Research (DFF)
  2. Technology and Production Sciences (FTP) [12-126515/0602-02670B]
  3. Finnish Pharmaceutical Society

Ask authors/readers for more resources

Porous implants or implantable scaffolds used for tissue regeneration can encourage tissue growth inside the implant and provide extended drug release. Water-soluble polymers incorporated into a biodegradable or inert implant matrix may leach out upon contact with biological fluids and thereby gradually increasing the porosity of the implant and simultaneously release drug from the implant matrix. Different molecular weight grades of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) were mixed with polylactide and extruded into model implants containing nitrofurantoin as a model drug. The effect of the leached pore formers on the implant porosity and the rheology of the implant microenvironment in vitro was investigated and it was shown that HPMC pore formers had the greatest effect on the surrounding viscosity, with higher drug release and pore forming ability as compared to the MC pore formers. The highest molecular weight HPMC led to the most significant increase in viscosity of the implant microenvironment, while the highest drug release was achieved with the lowest molecular weight HPMC. The data suggested that the microenvironmental rheology of the implant, both in the formed pores and in biological fluids in the immediate vicinity of the implant could be an important factor affecting the diffusion of the drug and other molecules in the implantation site.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available