4.7 Article

Global analysis of the MATE gene family of metabolite transporters in tomato

Journal

BMC PLANT BIOLOGY
Volume 17, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12870-017-1115-2

Keywords

Antiporter; Efflux; Genome evolution; Metabolic gene cluster; Regulatory gene network

Categories

Funding

  1. Coordination for the Improvement of Higher Education Personnel (CAPES) from the Brazilian Ministry of Education
  2. Open Access Author Fund (OAAF) Pilot Program from the West Virginia University Libraries

Ask authors/readers for more resources

Background: Species in the Solanaceae family are known for producing plethora of specialized metabolites. In addition to biosynthesis pathways, a full comprehension of secondary metabolism must also take into account the transport and subcellular compartmentalization of substances. Here, we examined the MATE (Multidrug and Toxic Compound Extrusion, or Multi-Antimicrobial Extrusion) gene family in the tomato (Solanum lycopersicum) genome with the objective of better understanding the transport of secondary metabolites in this model species. MATE membrane effluxers encompass an ancient gene family of secondary transporters present in all kingdoms of life, but with a remarkable expansion in plants. They mediate the transport of primary and secondary metabolites using the proton motive force through several membrane systems of the cell. Results: We identified 67 genes coding for MATE transporters in the tomato genome, 33 of which are expressed constitutively whereas 34 are expressed in specific cell types or environmental conditions. Synteny analyses revealed bona fide paralogs and Arabidopsis orthologs. Co-expression analysis between MATE and regulatory genes revealed 78 positive and 8 negative strong associations (rho=|0.8|). We found no evidence of MATE transporters belonging to known metabolic gene clusters in tomato. Conclusions: Altogether, our expression data, phylogenetic analyses, and synteny study provide strong evidence of functional homologies between MATE genes of tomato and Arabidopsis thaliana. Our co-expression study revealed potential transcriptional regulators of MATE genes that warrant further investigation. This work sets the stage for genome-wide functional analyses of MATE transporters in tomato and other Solanaceae species of economic relevance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available